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Abstract—Despite the availability of the sensor and smart-
phone devices to fulfill the ubiquitous computing vision, the-
state-of-the-art falls short of this vision. We argue that the
reason for this gap is the lack of an infrastructure to task/utilize
these devices for collaboration and coordination. We propose that
Twitter can provide an “open” publish-subscribe infrastructure
for sensors and smartphones, and pave the way for ubiquitous
crowd-sourced sensing and collaboration applications. We de-
sign and implement a crowd-sourced sensing and collaboration
over Twitter, and showcase our system in the context of two
applications: a crowd-sourced weather radar, and a participatory
noise-mapping application. Our results from real-world Twitter
experiments give insights into the feasibility of this approach and
outlines the research challenges in sensor/smartphone integration
to Twitter.

I. I NTRODUCTION

The ubiquitous systems vision [1] of embedding and weav-
ing abundantly available tiny-computers to the fabric of our
daily lives is close to fruition. With the advances in MEMS
technology in the previous decade, it has become feasible
to produce various types of sensors (such as magnetometers,
accelerometers, passive-infrared based proximity, acoustics,
light, heat) inexpensively, in very small-form factor, andin
low-power usage. Furthermore, cellphone technology has seen
an adoption rate faster than any other technology in human his-
tory [2]: as of 2009, the number of cellphone subscribers has
exceeded 3.3 billion users. The rate of innovation in this field
has been head-spinning. Nokia, Google, Microsoft, and Apple
have all introduced cellphone operating systems (Symbian,
Android, Windows Mobile, iPhoneOS) and provided APIs
for enabling open application development on the cellphones.
These modern cellphones, which are dubbed assmartphones,
enable location-aware services as well as empowering the
users to generate and access multimedia content.

Despite the availability of the devices to fulfill the ubiqui-
tous computing vision, the-state-of-the-art falls short of this
vision. We argue that the reason for this gap is the lack of
an infrastructure to task/utilize these devices for collaboration
and coordination. In the absence of such an infrastructure,the
state-of-the-art today is for each device to connect to Internet
to download/upload data and accomplish an individual task
that does not require collaboration and coordination. Providing

an infrastructure for publish/subscribe and tasking of these
devices enables any node to search the data published by
several nodes in one region to aggregate and decide on a
question, as well as task several nodes in one region to acquire
the needed data (if the data is not already being published to
the infrastructure).

We propose that Twitter [3] can provide an “open” publish-
subscribe infrastructure for sensors and smartphones and pave
the way for ubiquitous crowd-sourced sensing and collab-
oration applications. The open publish-subscribe system of
Twitter implies that different actors may integrate user data
differently. Moreover, third parties can use the gathered data
in unanticipated ways to offer new services with them. In ad-
dition to this open publish-subscribe infrastructure, thesocial
networks angle of Twitter also provides a useful feature forthe
crowd-sourced sensing and collaboration applications. Finally,
the wide popularity of Twitter and the big community behind
it (more than 30 million users in US), is an important reason
to target our crowd-sourcing system for Twitter: It is easier to
give the community a tool than to give the tool a community.

More specifically, we provide the following contributions.
• In Section II, we provide a detailed survey of Twitter

with existing application domains on news and alert
systems. In Section III, we present emerging application
domains for Twitter: including crowd-sourcing, partici-
patory sensing, social collaboration, expert-finding, and
market research and trend mining.

• We discuss sensor integration to Twitter in Section III-A
and smartphone integration in Section III-B. We point to
a potential new architectural trend in sensor integration,
that of inexpensive sensors using cellular data network to
reach Internet in one hop.

• In Section IV, we present our design and implementation
of a crowd-sourced sensing and collaboration system over
Twitter. Central to our system is a Twitter-bot (with an in-
tegrated database system) that accepts questions, crowd-
sources them, and aggregates the answers to reply back to
the querier. The system also includes a smartphone client
for automatically pushing sensor reading information to
Twitter.

• In Sections V and VI-A, we showcase and evaluate the



performance of our crowd-sourced sensing and collab-
oration system on two case-studies. The first one is a
crowd-sourced weather radar, which help monitor fine-
granularity weather conditions and act as a ground-truth.
1 Our second application is noise mapping of a region
by aggregating the automatic noise-sensing updates from
smartphones.

• We present an analysis of our real-world Twitter experi-
ments to give insights for the feasibility of our approach.
We find that although we do not offer the user any
incentives to reply, our queries receive at least 15%
reply ratios. Surprisingly, 50% of the total replies arrive
within the first 10 minutes of our query, and 80% of
the replies arrives within the first 2 hours, enabling low-
latency operations for crowd-sourcing applications. Our
experiments also found that consistently the majority of
replies come from users that access Twitter from their
mobile phones.

II. T WITTER

A. Twitter in a Nutshell

A web 2.0 project, Facebook.com established a status update
field in June 2006, but it was Twitter.com that took status
sharing between people to mobile phones four months later.
First named as “Status”, then as “Twttr”, Twitter has gone
beyond status sharing and became a Web 2.0 microblogging
site for information sharing and news reporting. Twitter started
its journey in 2006, but its fame started to spread after the
South by Southwest festival in 2007. In the event, company
set up user accounts for the participants, and used big screens
streaming tweets from them in the conference simultaneously.
The effect of the conference was huge for Twitter. According
to a report by HubSpot in 2008 [4], despite being functional
since 2006, Twitter had its 70% of users joined in 2008, and
reached around 4-5 million users, making it a top 1000 website
in web traffic.

The trend of growth for Twitter has continued since then. In
2009, HubSpot [5] reported an astonishing 18.0000% growth
rate of Twitter users. The report gives the total number of
Twitter users in USA as 27 million. 55% of these users are
male, 48% is between 18 and 34 ages. Twitter has seen a
rapid growth in the western sphere, and cities like London,
New York and San Francisco generate the largest traffic on
the site. Top 100 cities list [6] is dominated by US, with the
first non-USA city being Toronto, Canada. Tehran, Iran is 18th
on the list, making it the first non-western city. Tokyo, Japan,
once in top 10 in 2008, now enters the list as the 21st city.

B. Beneath the Hood

Twitter’s success can be attributed to two main factors;
elegance in design, and simplicity in adding third party

1You can visit our weather radar atrainradar on Twitter.
We display the answers to our weather radar on a map at
http://ubicomp.cse.buffalo.edu/rainradar. The map is configurable to show
results from previous days, and also is zoomable to show fine-grain locations
of the replies.

improvements to Twitter. Elegance is due to the character
limit. Twitter names micro-blog posts from users as tweets.
Each tweet has a 140 character limit which is inherited from
text messaging. (The original 160 character SMS limit was
reorganized into 20 character username and 140 character post
fields.) A comparison between blogging and microblogging
gives us a good understanding of the reason behind Twitter’s
popularity. While blogging requires good writing skills and
large content to fill pages, Twitter restricts posts to 140
characters, which encourages much more people to post.

Simplicity is due to an early decision by Twitter to provide
a HTTP based open source API and share posts with third
party applications. Twitter’s API consists of two different
parts: Search API and REST API. REST API enables Twitter
developers to access the core Twitter data. This data includes
tweets, timelines, and user data. Search API provides the
developer to query the tweets. It also provides information
about the trending topics. The usage of both APIs is subject to
rate limiting, however, based on the request of the third party,
Twitter may add these applications to its whitelist and remove
request limitations. The ease and flexible usage of Twitter API
encouraged several developers to write applications. Starting
with Twitterrific in January 2007, many applications have been
created for Twitter [7].

C. Existing Twitter Application Domains

1) News: Twitter is becoming regarded as the fastest way
to reach to breaking news. Users’ collaboration has given
Twitter a clear edge over news centers and recently news
centers have set up Twitter accounts and encouraged users
to interact with these accounts in order to capture breaking
news. CNN maintains 45 official Twitter accounts with more
than 5 million followers. During the election protests in Iran,
Twitter played a greater role than news centers, and attracted
attention. US government reportedly warned Twitter.com to
not to undergo maintenance for it would break the news stream
from Iranian users [8]. Even after banning foreign journalists
from covering rallies, Iran could not stop information flow
and finally shut down access to Twitter. In recent Mumbai
attacks in India, just minutes after the attacks, Twitter was
the major source until news sites caught up with updates. As
well as posts, information flow to Twitter consists of pictures,
links and videos. Demonstration pictures from Iran and the
first picture from US Airways plane in the Hudson River [9]
increased Twitter’s popularity in the public. The Economist
declared Twitter a winner in this information race [10].

2) Alert Systems: Twitter provides a system that can con-
nect residents of a city with virtually no cost. It also in-
creases the abilities of an alert system by inputting more
user generated data. Some cities already opted for Twitter
to alert their residents [11]. The Virginia Tech incident in
2007 highlighted the security issues on university campuses.
To integrate e2Campus emergency notification network with
popular social networks, Pacific University of Forest Grove,
Oregon, implemented a Twitter based alert system for its
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students, and the trend is likely to grow [12]. With this system,
universities can send e2Campus alerts to popular networks.

III. R ESEARCHDIRECTIONS USINGTWITTER

In this section we discuss sensor and smartphone integra-
tion to Twitter and identify research directions and emerging
applications for these domains.

A. Integrating Sensors

With the advances in MEMS technology in the previous
decade, it has become feasible to produce various types
of sensors (such as magnetometers, accelerometers, passive-
infrared based proximity, acoustics, light, heat) inexpensively,
in very small-form factor, and in low-power usage. Moreover
there has been nearly a decade of research in WSNs and
some real-world deployments of WSNs have been successfully
demonstrated [13]–[16]. As such, WSNs offer an untapped
source of information about our physical world. However,
WSNs have not achieved the broad impact and visibility it
deserves. Not only are we far away from “a central nervous
system for earth”, there is no significant market penetration
for WSNs yet.

Arguably the greatest barrier against wider adoption of
WSNs is the difficulty in locating sensors and subscribing
to them. We propose that Twitter can provide an “open”
publish-subscribe infrastructure for sensors, as well as the
search/discovery of sensors with certain attributes. Moreover,
having access to a lot of sensors is also valuable in that it
would be possible to reduce false-positives from sensors by
cross-checks. Below we list some ideas we are pursuing for
sensor integration to Twitter.

Sensor tweet standards.In order to search and process
sensor values on Twitter, we need to agree upon a standard for
publishing these sensor readings. We offer a biography format
on Twitter that describes a sensor in detail in Section IV-B.
The bio-code makes sensors easy to find. By just searching
for the desired sensor functionalities using the Twitter API
over the bios, one can reach all sensors within a locality that
provides the desired functionalities.

We are currently developing a standard,TweetML, for tweet-
ing sensor values. We will make use of the built-in hashtags
feature in Twitter for easier accessibility and searchability of
sensor value fields. As part of our current work, we are pub-
lishing data to Twitter from some existing WSNs deployments.
One of these is the wine-cellar monitoring WSN deployment,
and another is personnel tracking WSN deployment.

New WSN architectures. The popularity of Twitter already
have resulted in the production of inexpensive specialized
devices for tweeting. TwitterPeek [17] is a very good example
of this trend. TwitterPeek enables the user to tweet and follow
Twitter from anywhere (no WiFi necessary) using the cellular
data network to connect to Twitter. One can buy TwitterPeek
for $199 and get connectivity service for the lifetime of the
device –without any bills ever. In comparison a barebones
WSN node with only 100 feet transmission radius is rated at
$129. The reason TwitterPeek is able to offer such a powerful

device at such a low price is because of the benefits of mass
production. TwitterPeek may signal a new direction for WSN
devices. Instead of using low communication range devices
that incur the challenges/complexity of maintaining a multihop
network and still require a basestation to access Internet,
TwitterPeek-like sensors can directly reach Internet at one hop.
These devices may not only tweet their sensor readings, but
can also be easily controlled over Twitter to reconfigure their
sensing schedules and tune their parameters.

B. Integrating Smartphones

Smartphones provide significant advantages over traditional
wireless sensor nodes. Firstly, smartphones are mobile. Wher-
ever a smartphone user goes, smartphone can take sensor
readings (with built-in sensors for acoustic, image, video,
accelerometer, tilt, magnetometer, and potentially with other
integrated custom sensors). The dynamic geolocation feature
of smartphones enables these readings to be location and time-
stamped. Thus, in contrast to WSN nodes that are tied to
static locations, and do not scale for coverage of large areas,
smartphones cover large areas due to their mobility. Secondly,
smartphones are personal and administrated by their users.In
contrast to sensor networks where energy-efficiency of utmost
importance, smartphones are recharged by their users and itis
not necessary to try to squeeze every bit of energy. Moreover,
since smartphones are personal, they provide the potentialof
interacting with the phone user for tasks requiring human
intelligence and intervention, such as taking a picture of a
requested location, answering a question for which the useris
well-equipped.

Below, we identify 3 new application domains for smart-
phone integration to Twitter, with increasing level of com-
plexity.

1) Participatory Sensing: Participatory sensing is the use of
volunteering smartphones to collect data from a large region.
Although there has been significant work on participatory
sensing [18], using Twitter opens up novel improvements
on this application domain. Twitter’s open publish-subscribe
system enables others to use the gathered data in unanticipated
ways and offer new services over them. Moreover Twitter’s
social network aspect enables new features to be added to
participatory sensing. For example, when one of the users
have performed significant amount of participatory sensing
but her friend and competitor (Twitter enables using lists for
followers/friends) have not done anything for that week, our
system can send a reminder message for that friend.

There is already good support for enabling participatory
sensing applications over Twitter. Some Twitter third party
applications (including Twittervision17, Twittearth, Twitter
Atlas, Twibs20) use maps to show status posts, and can be
configured to show posts only from certain regions.

2) Crowd-Sourcing: Crowd-sourcing means distributing a
query to several Twitter users in order to gather and aggregate
the results and exploit the wisdom-of-crowds effect. Examples
of crowd-sourcing may be a weather/rainradar (with better pre-
cision and ground-truth than meteorological weather radars),
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and polling for the best restaurant entree in town.
Crowd-sourcing depends on user participation. With Twit-

ter’s popularity, finding a user to ask a question is not a
problem, and we find that users are willing to participate and
answer questions. In our experiments up to 1/6th of our queries
got answered, although we did not provide any incentive for
answering. We think this is due to the sharing and participatory
nature of Twitter culture. It is possible and easy to provide
incentives for encouraging participation. Using Twitter’s list
functionality a group of users might be classified as experts
of a topic. Each topic may have multiple user groups with
different expert levels. Upon answering questions, the users
can get promoted to a higher level. Visibility of these lists
to the public would will be a great incentive for users to
collaborate. Another way to incentivize users is to give the
users that answer more questions the right to send more
questions to our crowd-sourcing engine.

The social network nature of Twitter can also be exploited
to provide an extra incentive for crowd-sourcing. It is alsopos-
sible to provide useful feedback to crowd-source participant
based on others answers. For example, the participant may get
to see how her answer fares with other answers. In the “best
restaurant” query, participants may get to learn which other
participants also favorite their restaurant of choice.

3) Social Collaboration: Social collaboration applications
are more sophisticated than crowd-sourcing applications in
that they require back-and-forth interaction in contrast to the
asymmetric one-shot interaction involved in crowd-sourcing.
Examples of social collaboration applications include pick-up
soccer games, arranged ride-sharing, community-organization
events, support groups for addicts, and support groups for
exercising and weight-watching.

C. Data Mining of Tweets

Twitter provides an excellent medium for spatiotemporal
text mining and information retrieval. Here we summarize
three research problems in the context of mining Twitter data:
text classification, expert finding, and trend mining.

Text Classification. A useful research problem mining of
tweets is to classify streaming tweets into topic-based groups.
Mining short segments of text has been studied in the literature
in various other contexts, e.g., query-query similarity [19],
paragraph and sentence similarity [20]. A successful Twitter
text classification needs to handle a diverse set of streaming
short text messages with abbreviations, slangs, and no sound
grammar use. Fortunately, the quality of mining results can
be improved by incorporating the rich contextual information,
such as the author bio, profile, hash tags, urls, previous tweets
and status of the author in the underlying social network.

Expert Finding. Expert finding have been traditionally
studied in the context of enterprise intranets [21]. One of
the most promising fields of information finding on Twitter
takes advantage of the sheer size of its huge user base.
Identifying experts in topics of user interests is a challenging
task, given the large number of users and wide variety of
potential interests. Some applications use bios to group similar
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Fig. 1. Crowd-sourcing System Architecture

people, and user posts can be scanned to find people with
same hobbies, background and profession. Besides user bios
and previous tweets as the text-base, the spatial and temporal
meta-data provide a constraint on the potential user-base,since
we typically look for ideas constrained to location and time.
Twitter has the potential of involving more than locating
experts, it provides an environment for people to assert their
expertise by actively joining the information flow and giving
useful insights.

Trend Analysis. While expert finding focuses on authorita-
tive sources, observing the patterns in a crowd would provide
information with the power of collaboration potentially by
millions of users. Applications of trend mining include identi-
fying and monitoring emerging topics and events dynamically
[22], [23], and sentiment analysis on user posts for products
publicized on Twitter [24]. Canonizing some ideas through
Twitter user posts has an inherent liability to manipulation,
but it also offers a quick and effective way of getting to
know how people react to, discuss and adopt new ideas. By
aggregating users’ ideas, we can effectively eliminate fringe
cases, and find accurate information on a fact. The system
strongly resembles the idea of democracy. Crowd mining is a
luminous manifestation of the power of Web 2.0 applications.
To make it more interesting, Twitter as an open platform
enables briefer exchanges of information that would be lost
in a lengthy blog or text.

IV. OUR CROWD-SOURCINGSYSTEM ARCHITECTURE

In this section, we present the design of our crowd-sourced
sensing and collaboration system over Twitter. Figure 1 il-
lustrates the high level architecture of our crowd-sourcing
system. Twitter acts a middleware for publish/subsribe as well
as search & discovery. Our system is composed of three
components namelyAskweet, Sensweet and Twitter clients.
Sensweet is a smartphone application that publishes real-time
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readings from the integrated-sensors to Twitter.Askweet is a
program that listens to its Twitter account for questions and
processes the questions and aggregates the replies it receives
to these questions fromSensweet and theTwitter clients. We
discuss the design of the Askweet and Sensweet components
in more detail below.

A. Askweet

Askweet accepts a question, and tries to answer the ques-
tion using the data on Twitter, potentially data published by
Sensweets. If it is not possible to answer the question with ex-
isting data and/or if the question requires interaction, Askweet
finds experts on Twitter (potentially using information retrieval
techniques) and forwards the question to these experts. After
obtaining answers from the experts, it replies the answers back
to the asker. Askweet accepts a certain syntax from queries and
replies, but it can also be extended and generalized to adopt
modern natural language processing techniques.

The Askweet components of two case studies in this paper
run on a dedicated server, and keep all relevant data in a
database to process questions and replies in a coordinated mat-
ter. Due to the parallelizable nature of processing queriesand
replies (a thread is assigned to each reply), it is easy to deploy
Askweet on a cloud computing platform for elastic scalability.
Since Askweet accounts have been recently whitelisted by
Twitter and hourly request limits removed, it is possible to
implement Askweet over Hadoop Map/Reduce framework to
handle millions of queries and replies daily.

B. Sensweet

A Sensweet application uses the smartphones’ ability to
work in the background without distracting the mobile user.
Sensweet applications sense the surrounding environment and
send these data to the Twitter. While sending the data to
Twitter, the Sensweet client formats the data according to
the bio-code it advertises in the Biography section of its
Twitter account. The main idea of using a bio-code is to allow
worldwide users to search for the sensors they are looking for
on-the-fly and enjoy a plug-and-play sensor network without
registering through dedicated sites.

Here we provide a standard for a bio-code for Twitter to
encode the values published by the sensor. To illustrate with an
example, the Bio section of our noise-sensing application reads
as: |LO :?43.003,−78.787|N97 : NO|UTC − 5|UB : CSE : CSS|.
This bio-code consists of tuples separated with a vertical bar
(|). In each tuple, descriptive fields are separated with a colon
(:). The values that are separated with commas describe the
phenomena the sensor(s) captures. The first tuple is always
the location parameter: longitude and latitude (obtained from
the built-in GPSs or entered manually). If the sensor is mobile
(e.g., smartphone), a question mark will precede the longitude
value. Even for mobile sensors a default location is added to
give the queriers an idea of the region the sensor operates. The
question mark hints that a more accurate location is included
in the tweets. The second tuple explains the manufacturer of
the sensor, product ID (if possible) and the sensor type(s) the
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Fig. 2. State transition diagram for Askweet component

sensor provides. The third tuple is optional, and describes
the time zone that the sensor uses and can also include a
timestamp. Although Twitter provides timestamping of tweets,
this extra timestamp becomes important in case when a sensor
need to store readings and send them later when it can connect
to the Internet. The fourth tuple involves identification ofthe
company/project that deploys the sensor, and defines a group
id to locate other sensors that are part of that project.

Thus, the above bio-code is decoded as: Location is dy-
namic, but default location is UB North Campus Bell hall,
Nokia N97 is used to capture GPS and accelerometer values
in NY time zone for UB CSE Crowd-Sourced Sensing (CSS)
Project.

V. CASE STUDY: CROWD-SOURCEDWEATHER RADAR

In this section we explain our crowd-sourced weather
radar application. For the sake of simplicity, we choose a
topic where everybody in Twitter can be an expert: the
current weather condition. Our application contains two sub-
applications, one of them obtains the current weather condition
from users, and the other one obtains guesses from the users
about the next day’s weather condition.

Weather radar application has its own question and answer
format. The question messages sent by query owners are in the
form of “?[Application Name] Loc:Location” where applica-
tion name is either Weather or WeatherGuess. For instance
“?Weather Loc:Buffalo,NY” might be a valid question for
asking weather condition in Buffalo,NY. The forwarded query
to the Twitter users is of the form: “How is the weather there
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now? reply 0 for sunny, 1 for cloudy, 2 for rainy, and 3 for
snowy” Our weather radar application account can be visited
at rainradar on Twitter. We display the answers to our weather
radar on a map at http://ubicomp.cse.buffalo.edu/rainradar.
The map is configurable to show results from previous days,
and is also zoomable to show fine-grain locations of the
replies.

We have implemented only the Askweet component of the
crowd-sourced system since the Sensweet component can be
any Twitter client. The Askweet component of our weather
radar application is written in Java Programming language
by using Twitter4J open source API library and total size of
the source is about 2KLOC. Askweet listens to the incoming
messages to its Twitter account and processes them with
respect to their message types. The main function of Askweet
component is to get a question, process it and/or forward this
query to the multiple users who can answer it. After obtaining
answers from Twitter users, Askweet sends the reply to the
original querier.

Our Askweet implementation is multithreaded for scalabil-
ity, with each thread implementing a specific functionality.
When the Askweet application is launched (Figure 2), it starts
the poll thread that polls the Twitter account and gets the
messages. Then the thread detects whether the message is
a question or answer. Depending on the message type, it
starts either a question handle thread or a process answer
thread. Poll thread keeps on checking the account every minute
continuously to get the new messages addressed to itself.

Question handle thread receives the question from the
poll thread and detects if it is weather guess question or
weather condition question. Depending on the question type
it starts either a weather condition application thread or a
weather guess application thread. Question handle thread also
starts Twitter rate-limit checker thread in order to ensurethat
Askweet stays within Twitter’s request limits. After this step,
the question handle thread is terminated.

Weather guess application and weather condition application
threads have almost the same functionality. Both of them get
the question and parse the location from question text and
search through Twitter to find users for the specified location.
Then they send the question to the selected qualifying Twitter
users. After that these application threads are terminated. Both
of the applications keep all the relevant data in a database in
order to observe the social collaboration and attendance. This
database also helps the program not to spam any Twitter user
with multiple requests within a week.

Twitter rate-limit checker thread checks the rate limit and
locks question asking permit if rate limit exceeds and releases
the lock if otherwise. Process answer thread gets the answers
from the poll thread and tweets the answer to Twitter. It also
selects five of the answers to forward to the original querier.

A. Experiment Results

In this section, we present our experimental results for
weather radar application. We performed three types of ex-
periments using weather radar. In the first one, we compare

the user responses in different time slices of day for New York
City (NYC). In the second, we compare user responses from
three different cities: NYC, Toronto and Montreal. In the last
one, we analyze the correlation of answers from our users with
data from weather.com for one day (December 6, 2009).

In the first experiment, we compare the user response
behaviors in NYC at different time slices. We observed that
the response times in the afternoon and in the evening are
better than those in the morning and at night (Figure 3(a)).
An interesting phenomenon is that on the average 50% of the
answers are received within the first ten minutes (Figure 3(a)).
Figure 3(b) shows the user contribution to our experiments.
We observe that Twitter user contribution to the experiment
is highest in the morning which is nearly 20% (Figure 3(b));
we get a response from 20% of the queried users. For the
other time slices, the contribution is around 15% (Figure 3(b)).
Figure 3(c) shows the user distribution with respect to Twitter
client types. At night time, an overwhelming majority of
people use mobile Twitter clients to send their responses (Fig-
ure 3(c)). Overall, mobile client users consistently dominate
over desktop/laptop users (Figure 3(c)).

In the second experiment, we compare the user responses
from different cities. We observe that users in NYC respond
quicker than those in Toronto and Montreal, which have almost
the same response patterns (Figure 4(a)). In Figure 4b, we
compare the participation ratio of the users in these three
cities. We see that users in NYC participate more than those
in Toronto and Montreal (Figure 4(b)). In all these three cities,
mobile Twitter client users dominate over desktop/laptop users
and this ratio is highest in NYC (Figure 4(c)).

TABLE I
COMPARISON OF USER RESPONSES WITH WEATHER.COM

City Match for Current Day Match for Next Day
New York City 89% 56%

Toronto 79% 29%

Montreal 88% 54%

In the final experiment, we analyze the correlation of
answers from our users with data from Weather.com. Since
it is not practical to validate Twitter user responses with
various fine-grain spatial (latitude, longitude) and temporal
dimensions, the correlation is based on course-grain city wide
level weather data for the entire day.

In the first column of Table I, we list the correlation of user
responses with the data from weather.com for the current day
(the weather.com data and user responses are collected in the
same day). If the weather.com reports “snowy” for the day,
all responses except “snowy” are counted as “unmatched”.
If the weather.com reports a fuzzy condition such as “partly
cloudy”, all responses including “sunny” and “cloudy” are
counted as “matched”. In this experiment, we observe that
for each city at least 79% of the answers match with the data
from weather.com.

In the second column of Table I, we list the correlation
of user predictions for the next day with the data from
weather.com. Here we collect the predictions of users in
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Fig. 3. Experimental results for NYC in different time slices
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Fig. 4. Experimental results for 3 cities

previous day (December 6) and find the correlations of those
predictions with weather.com data collected on the next day
(December 7). We observe that at least 50% of the user
predictions match with weather.com for New York City and
Montreal whereas it is 29% in Toronto.

VI. CASE STUDY: SMARTPHONE ENABLED NOISE MAP

In this application, we measure the noise level of the
surrounding environment via GPS enabled smartphones and
provide a noise level querying service over Twitter. We
describe our implementations of the Askweet and Sensweet
components for this application below.

Askweet component. We implemented the Askweet com-
ponent similar to that of the weather radar application. The
noise map application has its own query format of “?Noise
Loc:Location”. Any Twitter user can send a question to the
Twitter account of Askweet (twitter.com/askweet) in order
to query the noise level of a specific location. For example
“?Noise Loc:Student Union, UB, Buffalo, NY” queries for the
noise level of the Student Union at the University at Buffalo.

When Askweet gets a new query, it automatically tries
to resolve the location by using Google’s Geocoding Ser-
vice (http://code.google.com/apis/maps/documentation/). After
getting the latitude and longitude information from Google’s
Geocoding Service, Askweet searches previously known
Sensweet clients in the database in proximity of the specified
location. If Askweet finds a local client, it returns the latest
noise level obtained from that client. If multiple Sensweet
clients are found, the noise value with the latest timestamp
is returned to the querier.

Sensweet component.We implemented a Sensweet client
for the Nokia N97 Smartphone series. For implementing the
Sensweet client we used Carbide C++ version 2.0.2, Nokia
N97 Symbian S60 SDK V1.0 and Qt Tower 4.5.2. The total
size of the source code for this Sensweet component is more
than 1500 lines of code.

The Sensweet client detects the noise level of the surround-
ing environment and forwards this data to Twitter using our
TweetML format mentioned in Section IV-B. The specific
TweetML format (|Loc|Noise : V al|Timestamp|) for Noise
Map application includes ordered values for location, sensor
reading and timestamp. An example sensor reading can be
“Noise:H” denoting that the current noise reading is “High”.
Since Nokia N97 smartphones do not provide the noise level
in decibel format, we implemented our own noise sensor driver
to map noise samples into three categories:L as Low,M as
Medium andH as High.

Our Sensweet client implements a timer for reading the GPS
coordinates and using the microphone to record a one second
noise sample in “Windows WAV” file format. Then, Sensweet
client parses this WAV file to obtain the mean value for the
amplitude of signals in the sample. In order to map the current
sample into one of the noise categories{Low, Medium, High},
we used three normal distributions. For a given mean valuex

of amplitudes obtained from a one second sample, we calculate
the following probability density function (pdf(x)) for each of
the predefined 3 normal distributions:

pdf(x) =
1√

2πσ2
exp(− (x − µ)2

2σ2
) (1)

The µ in the formula represents the mean of the corre-
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Fig. 5. Normal distributions for different noise levels
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Fig. 6. Representative samples for different noise levels

sponding distribution andσ2 represents the variance. The
assignment is based on the highest value. Since there is no gain
setting for the microphone of Nokia N97, our mapping is valid
for any Nokia N97 smartphone device. For the smartphones
having adjustable microphone gain, our mapping can be easily
adapted by dividing signal values by the gain factor.
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Fig. 7. State transition diagram for Sensweet client

The state diagram of the Sensweet client for noise map
application is given in Figure7. When the phone is started the
Sensweet application is also launched as a background process
and waits in the “idle” state. The GPS based location, noise
level, and current timestamp is logged to the flash memory
when the sensor timer is fired. We also keep another timer for
forwarding sensor readings to Twitter. When the Internet timer
is fired, main application reads the latest sensor readings from
the flash disk and tweets it (http://twitter.com/Sensweet).

A. Experiment Results

Here we provide our experimental results for the noise map
application.

In order to determine the normal distributions representing
the “Low”, “Medium”, and “High” categories for noise levels,
we performed experiments in six different locations with
varying noise levels. In each location, we recorded more than
200 noise samples with a duration of one second.
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Fig. 8. Daily noise fluctuation graph

We assign the “Low” category to the samples that we
obtained during the silence in home and computer lab lo-
cations. The amplitude distribution for “Low” level noise is
given in Figure 5(a). Here the amplitude (absolute value of
signal values) of low level noise mostly fluctuates between
[0,100], which also implies that signal values mostly fluctuate
between [-100,100] (Figure 6(a)). For the “Medium” category
we collect samples from the Student Union at UB and various
meeting rooms at the CSE department where people talk to
each other (noise mostly includes human voice). The “High”
category is collected in bars and clubs in Buffalo with loud
background music. The normal distribution of amplitudes for
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“Medium” and “High” categories are given in Figure 5(b) and
Figure 5(c). Representative samples for these two categories
are also given in Figure 6(b) and Figure 6(c) respectively.

In another experiment, we measure the noise fluctuation of
our case study user for one weekend day over different time
slices starting from Saturday 4.00 pm until Sunday 8.00 am
(Figure 8). By analyzing the temporal noise fluctuation, it can
be possible to predict some of the activities of the user during
the day time. In the afternoon period the noise level fluctuates
between “Low” and “Medium” level. During this time the user
was at home and meeting with his friends. In the evening
period the ratio of “Low” level decreases and ratio of other
two levels increase. In this period, the user was having dinner
with his/her friends in some place and going to a bar/club after
that. In the night period the noise level is mostly “High” and
the user was visiting a club. The noise level in the morning
period is “Low” mostly since the case user was sleeping at
home.

VII. C ONCLUDING REMARKS

We presented a crowd-sourcing system architecture over
Twitter, and demonstrated this system with two case studies:
weather radar and noise mapping. Our experiments with
crowd-sourcing on Twitter are promising. Even without an
incentive structure, Twitter users volunteer to participate in
our crowd-sourcing experiments (with around 15% reply rates)
and the latency of the replies are low (50% replies arrive
in 30 minutes and 80% replies arrive in 2 hours). Another
promising finding is that a majority of replies were tweeted
from smartphones.

Our experiments suggest that Twitter provides a suitable
open publish-subscribe infrastructure for tasking/utilizing sen-
sors and smartphones and can pave the way for ubiquitous
crowd-sourced sensing and social collaboration applications.
There are several open research questions remaining for fulfill-
ing this vision. Security and trust issues remain as significant
challenges. In our future work we will consider mining of
tweets and exploiting of social networks structures in Twitter
to deploy expert finding and social collaboration applica-
tions. We will also experiment with adding various incentive
schemes to our crowd-sourcing system, caching replies, and
deploying our system on a cloud computing platform.
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