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Abstract—To achieve scalability, energy-efficiency, and timeli-
ness, wireless sensor network deployments increasingly employ
in-network processing. In this paper, we identify singlehop feed-
back collection as a key building block for in-network processing
applications, and introduce a basic singlehop primitive,pollcast.
The key idea behind this primitive is to exploit the receiver-
side collision detection information at the MAC-layer to speed-up
collaborative feedback collection. Using pollcast, a node can get
an affirmation about the existence of a node-level predicateP
in its neighborhood in constant time by asking all nodes where
P hold to reply simultaneously. We have implemented pollcast
on Tmotes using Chipcon 2420 radio. Our results show that this
primitive is indeed lightweight, resilient, and effective. Our paper
is also the first time receiver-side collision detection is achieved
in a practical manner for Chipcon 2420 radio.

I. I NTRODUCTION

Early deployments of wireless sensor networks (WSNs)
have been mostly limited to passive data collection, where
sensor readings from the network are relayed toward a bases-
tation for storage and processing [1], [2]. In order to cope with
the bandwidth/energy consumption and latency concerns asso-
ciated with this centralized approach,in-network information
processing has been widely adopted [3]–[5]. In-network pro-
cessing exploits the computation capability of sensor nodes to
process data locally in the network close to where it originates.
Two main use-cases of this approach are 1) to summarize
and reduce the data transmitted to the basestation, and 2) to
perform decisions locally to avoid contacting the basestation
for each decision. An example of the first is the aggregation
of data and filtering of false-positives and duplicates, reducing
the energy wasted in routing these packets all the way to
the basestation only to be disposed there. An example of
the second appears in intruder-interceptor applications,where
having a leader responsible for the current intruder detection
is critical for maintaining a tracking structure [6]–[8].1

Although there have been many efficient “point solu-
tions” [3], [4], [10] to the problems that appear in the context
of these two use-cases, there has been no effort to address
the issue by developing efficient and general collaboration
primitives. In contrast to devising point solutions, designing

1In this scenario, in-network processing is required even for correctness,
as it has been shown that for satisfying optimality constraints, the latency
with which an interceptor requires information about the intruder it is tracking
depends on the relative locations of the two: the closer the distance, the smaller
the latency [9].

such primitives would improve reusability and integration, and
provide a unified framework for standardization of in-network
processing protocols.

Contributions and overview. We identify collaborative
feedback collection from a singlehop neighborhood as a key
building block for both use-cases of in-network processing. We
observe that wireless broadcast has many useful features for
facilitating collaboration. Firstly, broadcasting is atomic: that
is, all recipients receive a broadcast at the same time, which is
useful for synchronizing the nodes in singlehop for building
a structured feedback collection. Secondly, broadcast allows
receiver-side collision detection (RCD): that is, a snooping
node can detect collisions of messages, which is useful for
extracting feedback from multiple nodes in a quick manner.
Exploiting these features of wireless broadcast, we propose
an efficient and lightweight singlehop collaborative feedback
primitive, pollcast.

Using pollcast, a node can take a quick poll from its
neighborhood by asking all nodes with a certain property to
reply simultaneously. An operation starts with a “poll” phase,
where the initiator broadcasts a poll message of the form “does
there exist any node with propertyP?”. The initiator then
moves on to the second phase, the “vote” phase, to listen for
the responses to its poll. If the initiator hears silence in the
vote phase, it concludes that the polled predicateP does not
hold for any node. Otherwise, if there is a response or there
are multiple responses (in which case the initiator detectsa
collision via RCD), the initiator concludes thatP holds for
some nodes. Thus, regardless of the number of nodes that need
to reply, pollcast completes inO(1) time. Some applications
of pollcast operation are false-positive suppression, clustering,
and the querying of the neighborhood for debugging purposes.

We have implemented pollcast on the Tmotes [11] using the
popular Chipcon 2420 radios. We show performance results
from this implementation. In addition, we have implemented
pollcast under a WSN simulator [12] to be able to perform
more controlled experiments for a larger scale networks and
compare our primitive with other protocols.

Finally, our paper is the first time RCD feedback is achieved
for the popular CC2420 radios in a practical manner. Our
experiments indicate that our RCD implementation has around
100% completeness and 0% false-positive detections. Our
RCD technique is easily achievable at the MAC layer in



software and does not require any modification to the physical
layer or the wireless radio hardware.

Singlehop wireless broadcast has recently been identified
as a narrow-waist suitable for standardization efforts in the
WSNs [13]. Our efficient and lightweight singlehop collabo-
rative feedback primitives for supporting in-network process-
ing will help boost these standardization efforts. Researchers
working on cooperative control may become end-users of our
primitives, since pollcast is suitable for a control-theoretic
framework of periodically collecting information about the
state of the system and imposing a compensated control over
the system.

II. RELATED WORK

Collision detection. The feasibility of collision detection
for CC1000 (mica2) radios has been demonstrated in [14]
for a limited context (for certain capture/shadowing effect
scenarios). The success rate of the preamble-based collision
detection used in [14] drops quickly for more than two
simultaneous senders. Our RCD implementation is based on
receiver-side carrier sensing and is more general and inclusive
than preamble-based RCD. Several existing MAC layers, such
as B-MAC [15], already support the carrier-sensing capability
required for our collision detector.

A recent empirical study on CC1000 radios [16] linked
the successful message reception in the presence of con-
current transmissions to the signal-to-interference-plus-noise-
ratio (SINR) exceeding a critical threshold. The results also
showed that it becomes harder to estimate the level of in-
terference in the presence of multiple interferers, and that
the measured SINR threshold generally increases with the
number of interferers. Hence, CC1000 performs poorly in the
presence of more than a couple of concurrent transmitters. Our
preliminary experiments find that the CC2420 radio behavior
under concurrent transmissions is more resilient. CC2420 radio
is able to receive a message successfully among a set of
several concurrently transmitted messages, due to the direct-
sequence spread spectrum (DSSS). Thus, in CC2420 radio,
SINR threshold for successful message reception becomes
harder to define and it becomes harder to correlate RSSI with
the successful message reception.

Singlehop programming abstractions. Several program-
ming abstractions have been proposed for WSNs [17]–[20].

The Tenet project [17] proposes a tiered WSN architec-
ture with small-form-factor motes and more powerful master
nodes. Tenet asserts that complex application logic shouldbe
implemented only on the masters. Applications running on
masters task motes, and motes just communicate back to the
masters the results from these tasks. Our singlehop polling
primitive would be instrumental for the masters in Tenet to
achieve quick and ad hoc feedback collection from the motes
ondemand.

In an effort to simplify the adoption of distributed algo-
rithms for WSNs in terms of a neighborhood abstraction,
Hood [18] provides an API that facilitates exchanging in-
formation among a node and its neighbors. For example,

Hood can define a one-hop neighborhood over which light
readings are shared. Beneath the API, Hood automatically
discovers neighbors and caches the values of their attributes
periodically, while simultaneously sharing the values of the
node’s own attributes. Similar to Hood, abstract regions [19]
and TeenyLime [20] propose mechanism for discovery and
sharing of data (structured as tuples) among sensor nodes.

Using the information exchange mechanisms proposed in
these abstractions [18]–[20], it may be possible to achieve
a constant response time to a query by performing periodic
state exchange among neighbors behind the curtains. How-
ever, a big problem facing these approaches is to decide
on the frequency of this exchange. If the exchange is done
infrequently, the query will be answered using stale data.
(This is especially problematic for real-time applications such
as intruder-interceptor applications.) If the exchange isdone
frequently, a lot of traffic is generated wasting precious energy
and bandwidth. In contrast to these work that deal with state
exchange among nodes, our focus in pollcast is to provide
a lightweight and efficient framework for on-demand binary
feedback collection from neighbors.

III. R ECEIVER-SIDE COLLISION DETECTION

A. RCD Implementation

Below we discuss pros and cons of three possible ap-
proaches to RCD implementation.

Received-signal-strength-indicator (RSSI) based collision
detection depends on monitoring the RSSI information from
the radio frequently (i.e., for every byte) and looking for pat-
terns that imply the existence of a collision. RSSI-based RCD
is a low-level and general technique for collision detection,
but it brings additional processing burden (due to the fre-
quent interrupts it generates for RSSI processing). Moreover,
compared to the CC1000 radios where the correlation with
interference and SINR is observable [16], achieving RSSI
based collision detection is much harder for the CC2420
radios.

Cyclic-redundancy-check (CRC) based collision detection
depends on checking the CRC bits of received messages, and
raising a collision detection upon encountering a bad CRC bit.
CRC is reliable, however, CRC-based RCD is applicable only
when the radio is locked to a certain message and preamble
and packet frame are received. Thus, CRC based RCD is not
general enough for detecting all type of collisions.

Carrier sensing based collision detection depends on sensing
the medium for ongoing transmissions. While carrier sensingis
widely used by transmitters in wireless networks with CSMA
MAC layers (including IEEE 802.11, IEEE 802.15.4, and all
of the WSN MAC protocols), we adopt this technique for use
by the receiver to detect collisions. The CC2420 radio exports
a Clear-Channel-Assessment (CCA) signal for the purposes
of carrier-sensing. CCA is well-engineered and robust, and
is calculated by the radio chip based on a window of RSSI
readings and thresholding. Since CCA has the additional
benefit of radio-level support, CCA obviates the need to
involve the CPU in collision detection, and is simpler and more
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Fig. 1. Collision detection performance

reliable than RSSI. The challenge with CCA signal is that, itis
generated only after a transmission is scheduled to the radio, so
for implementing RCD using CCA we manipulate the CC2420
radio to perform CCA also in the idle state. Using CCA-based
collision detection we are able to detect collisions even when
no intelligible packet information (such as the preambles)is
received due to interference.

We implement both CRC- and CCA-based RCD for
CC2420 radios and compare their performances next.

B. RCD Experiments

To evaluate our RCD implementation, we use a setup con-
sisting of upto 6 Tmote-Invent nodes with CC2420 radios. One
of these motes is designated as the poller, and the remaining
motes are programmed as voters. In each experiment, the
poller broadcasts a start message, upon which the voters
transmit a reply immediately (without performing CSMA as
per our modification to the TinyOS MAC layer). We initially
start with two voters and repeat each experiment 200 times,
before increasing the number of voters by one to investigate
the RCD performance under a more contended scenario.
Figure 1 presents our findings.

CRC-based RCD combined with successful reception of
one of the votes achieves upto 100% detections in the 2 and
3 voters case. In the 4 and 5 voter cases, the shadowing
effect decreases as the power-sum of other transmissions create
excessive interference for successful reception of any single
message. So CRC-based detections and successful receptions
of one vote decrease for these cases, since the probability
of successfully locking to a preamble decreases with the
degradation in shadowing effects. These results show that
CRC-based RCD is insufficient for detecting most collisions.

CCA-based RCD achieves a thorough detection of collisions
and is not noticeably affected by multiple voters as Figure 1
shows. We repeat CCA-based RCD experiments with varying
the distance between the motes and achieve similar very good
completeness results for collision detection.

Finally, we test the false-positive ratio of our RCD im-
plementation by repeating the experiments with 0 voters. In
our experiments, CCA-based detection has reported 1 false
positive out of 200 tries, so we conclude that the false-positives
do not constitute a problem for our RCD implementation.

IV. POLLCAST OPERATION

A. Pollcast Implementation

As we outlined in the Introduction, our pollcast operation
consists of two consecutive phases: poll-vote. In the poll phase,
an initiator may start a pollcast operation for predicateP by
broadcasting a POLLP message. In the vote phase, the initiator
switches to listen for the votes: receiving a VOTE or a collision
implies that there exist some nodes with the polled property
P , whereas silence means that no node satisfiesP . Any node
receiving a POLLP message in the poll phase should vote
accordingly in the vote phase. A VOTE broadcast is performed
only if the answer is “yes” for the node-level predicateP . The
nodes communicate a “no” by keeping quiet in the vote phase.

The poller can limit its poll to a subset of the neighborhood
by including a list of intended participants in the POLLP

message (otherwise, all neighbors are included in the polling
by default). This participant list feature is useful because, using
the result of a previous poll, the poller may adaptively select
a subset of participants for its next poll to narrow in on a
clue. This way incremental searching for a condition may be
possible, but we do not explore this any further here.

Pollcast operations in multihop networks. Even though
pollcasts are singlehop operations, when they are executedin
a multihop network, interference from neighboring regionsin
the form of hidden terminal problems are unavoidable. For the
sake of simplicity, we assume “atomicity” of pollcasts in a 2-
hop region. More specifically, we assume that when a pollcast
is in progress, there cannot be another simultaneous pollcast
within 2-hops of this pollcast. This assumption is motivated
by practical reasons. Using this assumption we are able to
keep our pollcast implementation extremely lightweight and
short in duration. In contrast, trying to cope with collision of
poll messages would require either a globally synchronized
rounds approach (as in [21], [22]) or introduction of several
new control messages (such as an RTS/CTS handshake with
every neighbor as in [23]) and the overhead may defeat the
purpose: lightweight singlehop collaborative feedback!

Our atomicity assumption is reasonable for low traffic WSN
deployments. In most WSN deployments the network is idle
for most of the time. For the case of bursty triggering of the
pollcasts (say, for example, due to detection of an intruder
in the area), we rely on CSMA to arbitrate our lightweight
pollcast operations in singlehop. Although we assume atomic-
ity in the design and presentation of pollcast, our experiment
and simulation results investigate the effects of collisions and
hidden terminal problems on the consistency of pollcasts under
low, medium, and heavy traffic loads.

B. Pollcast Applications

Pollcast enables a node to corroborate its estimates about
the environment with the neighboring nodes. One practical
example is in suppressing false-positive detections. Due to
inexpensive sensors, false-positives are frequent occurrences in
WSN deployments. For example, in the “Line in the sand” [2]
and “ExScal” [24] applications, sensors would often have



false-positive detections (due to heat drifts and sunlightin
out-door environments for PIR and due to noise for magne-
tometer). False-positives cause problems as they use up the
precious resources on the network. A false positive detection
is forwarded over several hops until it reaches a basestation
node or a clusterhead which can drop this detection as an
outlier. Pollcast operation is useful for filtering out false-
positive detections effectively. A node that has a detection (and
that has not yet heard any other detection from neighboring
nodes) may incite a pollcast operation to ask neighbors if
they also detected the alleged phenomenaP . This is a yes/no
question and can be executed very quickly using pollcast. Only
if the answer is affirmative (i.e., there is activity in the vote
phase) the initiator of the poll notifies the basestation about
its detection.

Other applications of pollcast follow from the second use-
case scenario of in-network processing, namely in-network
control. A good example for this case is barrier synchroniza-
tion. In WSNs barrier synchronization is useful for synchro-
nizing operations in each cluster. For example, the clusterhead
can query the member nodes as to whether they are finished
with the current phase of the operation before the cluster asa
whole can move to the next phase in the operation. Another
example of in-network control is leader election. Even though
an object is detected by many nodes at the same time, it
is important to elect a leader primarily responsible for the
object. The leader can then process and send messages, keep
track of the trajectory of the object, and hand it off to the
next leader. It may be advantageous to select the leader based
on the the strength of its detection. This can be checked
and established simultaneously, by making the initiator doa
pollcast by announcing its detection and challenging anyone
with a greater detection to vote. If no node votes, the initiator
announces its leadership at the end. Electing leaders is also
important in clustering applications. Several metrics maybe
used in the election of the clusterhead. For example, an
initiator may check to ensure that there are no other clusters
(clustermembers) in its singlehop [10].

C. Pollcast Experiments

For performing large-scale and controlled experiments, we
have implemented pollcast in Prowler [12], a MATLAB based
event driven simulator for distributed WSNs. We use Prowler
to simulate the radio transmission/propagation/reception de-
lays of Tmotes, including collisions in WSNs.

We compare pollcast with a strawman polling protocol
naivepoll. In naivepoll, after the initiator broadcasts a poll
message for a predicateP , the neighbors whereP hold send
their votes via CSMA. This, of course, means that if all the
voters are not within singlehop of each other, there may be
collisions of votes at the poller. Unlike pollcast, naivepoll does
not employ RCD to learn from collision of votes.

We simulate pollcast over a 10x10 grid of 100 nodes. Each
node has 8 neighbors (except the boundary nodes which may
have 3-5 neighbors). We perform the simulations varying the
number of concurrent pollers from 1 to 10 in unit steps and

then incrementing from 20 to 60 in steps of 10. All elected
pollers for a given simulation run try to execute their pollsin
the beginning of the run, with only CSMA arbitrating between
these pollers. For each simulation run, we also randomly
initialize the P predicates at the nodes, so that the number
of voters for a poll vary randomly.

Settling time of a simulation run is defined as the duration
between the first and last message sent in the simulation
run. The settling time graph in Figure 2 show that pollcast
takes less time to complete than naivepoll. This is expectedas
pollcast uses the backoffs in CSMA only for the poll messages,
but in naivepoll there are backoffs for both poll and vote
messages. A pollcast operation in isolation is about 3msecs,
and as the figure shows, for low traffic case the settling time
of pollcasts in the WSN is around 3 to 5 msecs.

Figure 3 investigates the loss of poll messages at the receiver
nodes and finds that a significant number of poll messages are
lost in both protocols due to the hidden terminal problem.
Pollcast seems to lose more poll messages because it sends
vote messages without any carrier sensing. So in pollcast a
vote message may be sent even when another poll message is
being transmitted in the neighborhood.

In Figure 4 we compare naivepoll and pollcast for incon-
sistencies: when no vote is received at the poller whereas in
reality the poller has at least one neighbor whereP holds. In
naivepoll an inconsistency occurs when all votes collide atthe
poller. Since naivepoll does not employ RCD, it cannot deduce
the existence of at least one vote in this case. In pollcast an
inconsistency occurs only when the poll message is lost on
ALL the voters. When comparing Figure 4 with Figure 3 for
the pollcast protocol, one should keep in mind that the loss of
poll messages in Figure 3 is forany neighbor, while Figure 4
indicates the loss of poll messages onall the voters. Hence
we find that the inconsistencies for pollcast is always less than
1/3 of that of naivepoll. Especially for the low traffic case,the
inconsistencies in pollcast is almost negligible.

Figure 4 also shows the number of false positives for
pollcast. False positives occur when a poller detects at least
one vote (collision of votes) when in fact there were no votes
for it. This may happen in pollcast because in the high traffic
case a poller may misinterpret a collision of two other polls
as a vote for its poll. Our experiments show that the number
of false-positives for pollcast is very low.

V. CONCLUDING REMARKS

In this paper, we presented a lightweight and efficient
singlehop primitives for collaborative feedback collection.
Using pollcast a node can query its singlehop neighborhood
about a predicateP and in O(1) time learns whether there
are neighbors for whichP holds. Our proposed RCD tech-
nique for the implementation of pollcast operation is easily
achievable at the MAC layer in software and does not re-
quire any modification to the physical layer or the wireless
radio hardware. As such, the pollcast operation is readily
applicable in WSNs and in a more general context for build-
ing robust mobile ad hoc network applications over 802.11-
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enabled networks. Some applications of pollcast in WSNs
are in efficient implementations of false-positive filtering, in-
network intruder classification, clustering, leader election, and
barrier synchronization algorithms. A desirable and obvious
enhancement that we added to the pollcast operation is to
return an approximate count of the numberCP of nodes
a propertyP holds. This enhancement would be useful for
querying of the neighborhood for classification of an intruder
(say as a soldier, car, or tank as in Exscal [24]) by counting
the detections in the neighborhood. Due to limited space we
refer reader to the technical report version of this study [25]
for this discussion.

Another interesting topic for future research is to determine
which lowerbounds would apply for common tasks (such as
majority detection, at-least-k detection, etc.) developed in our
framework. Since the poller can use the results from a previous
poll to adaptively select a subset of its neighbors for its next
poll, it is possible devise several efficient strategies forthese
tasks.
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